Infinite-Dimensional Optimization and Convexity
9780226199887
Infinite-Dimensional Optimization and Convexity
In this volume, Ekeland and Turnbull are mainly concerned with existence theory. They seek to determine whether, when given an optimization problem consisting of minimizing a functional over some feasible set, an optimal solution—a minimizer—may be found.
Table of Contents
Foreword
Chapter I - The Caratheodory Approach
1. Optimal Control Problems
2. Hamiltonian Systems
Chapter II - Infinite-dimensional Optimization
1. The Variational Principle
2. Strongly Continuous Functions on LP-spaces
3. Smooth Optimization in L2
4. Weak Topologies
5. Existence Theory for the Calculus of Variations
Chapter III - Duality Theory
1. Convex Analysis
2. Subdifferentiability
3. Necessary Conditions and Duality Theory
4. Non-convex Duality Theory
5. Applications of Duality to the Calculus of Variations
6. Relaxation Theory
Notes
References
Chapter I - The Caratheodory Approach
1. Optimal Control Problems
2. Hamiltonian Systems
Chapter II - Infinite-dimensional Optimization
1. The Variational Principle
2. Strongly Continuous Functions on LP-spaces
3. Smooth Optimization in L2
4. Weak Topologies
5. Existence Theory for the Calculus of Variations
Chapter III - Duality Theory
1. Convex Analysis
2. Subdifferentiability
3. Necessary Conditions and Duality Theory
4. Non-convex Duality Theory
5. Applications of Duality to the Calculus of Variations
6. Relaxation Theory
Notes
References
Be the first to know
Get the latest updates on new releases, special offers, and media highlights when you subscribe to our email lists!